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Cubic phases of self-assembled amphiphilic
aggregates

By Jou~x M. SEDDON AND Ricuarp H. TEMPLER

Department of Chemistry, Imperial College of Science, Technology and Medicine,
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In this paper we give an overview of cubic liquid-crystalline mesophases formed by
amphiphiles. In §1 we present brief descriptions of the principal types of
translationally ordered lyotropic phases, and describe the locations in the phase
diagrams where the different types of cubic phase occur. In §2 we discuss the various
forces that act between bilayers. These transverse interactions are relatively
straightforward to quantify in the case of lamellar phases, but are more complex for
cubic phases, because of the non-planar geometry. In §3 we show how an intrinsic
desire for interfacial curvature can lead to a state of physical frustration. We then
introduce the curvature elastic energy, and describe how this may be related to the
stress profile across the bilayer. In the following sections we focus attention on the
tnverse (water-in-oil) versions of the non-lamellar phases, although analogous effects
also operate in the normal topology (oil-in-water) structures. In §4 we briefly
describe the inverse hexagonal phase, which is the simplest inverse phase with curved
interfaces. This allows us to illustrate the role of hydrocarbon chain packing
frustration in a rather clear way before coming on to the more subtle interplay
between packing and curvature frustration, characteristic of the bicontinuous cubic
phases, which is discussed in §5. In §6 we describe an entirely different class of cubic
phases, with positive interfacial gaussian curvature. These cubic phases are composed
of complex packings of discrete micellar or inverse micellar aggregates, which may
be quasi-spherical and/or anisotropic in shape. Finally, in §7 we discuss geometric
aspects of transitions between lamellar, hexagonal and cubic phases, and show how
determination of the epitaxial relations between phases can shed light on the precise
mechanisms of the phase transitions.
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1. Introduction

This paper is concerned with the extraordinarily rich lyotropic liquid-crystalline
phase behaviour of amphiphilic molecules. We will only consider translationally
ordered phases, i.e. we will say nothing about micellar solutions, microemulsions or
sponge phases, which are described elsewhere in this Issue. Furthermore, at low
temperature and/or hydration, amphiphiles tend to adopt various structures such as
the gel phases, in which the hydrocarbon chain conformation is partially ordered or
even fully crystalline; these structures will also not be discussed here. Although we
will briefly mention the simpler lamellar and hexagonal phases, our main focus here
is on the lyotropic cubic phases, which are extraordinary liquid-crystalline structures
with three-dimensional periodicity.

A typical example of a class of amphiphilic molecules is the phospholipids, which
form the basic fluid bilayer structure of the biomembranes of all living cells. If we
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378 J. M. Seddon and R. H. Templer

Figure 1. Molecular conformations of DLPE and DMPC in the crystalline lamellar phase.
Adapted from Pascher et al. (1992).

compare the single crystal structures of dilauroylphosphatidylethanolamine (DLPE)
and dimyristoylphosphatidylcholine (DMPC) (Pascher et al. 1992), examples of the
two most common types of phospholipid found in animal cell membranes, we see that
the molecular conformations are in fact rather similar (figure 1). However, the
lyotropic phase behaviour of these two classes of lipid is dramatically different
(Seddon 1990a), due to the difference in the headgroup-headgroup and headgroup-
water interactions (such as hydrogen-bonding) induced by replacement of the PC
terminal trimethylammonium group with a simple ammonium group in PE. Thus a
seemingly rather minor chemical modification can have drastic consequences for the
lyotropic phase behaviour. A vast literature exists, documenting the effect of various
factors such as temperature, hydration, chainlength, headgroup modification, pH,
salt concentration, and the presence of polar, non-polar or amphiphilic solutes. A
number of review articles may be consulted for further details of these aspects
(Luzzati 1968; Shipley 1973; Charvolin & Tardieu 1978; Tiddy 1980; Small 1986;
Larsson 1989 ; Lindblom & Rilfors 1989 ; Gruner 1989; Fontell 1990; Seddon 1990¢;
Tate et al. 1991 ; Ceve & Marsh 1987). It is clear that an understanding of the precise
form of the phase behaviour for a particular amphiphile would require a detailed
consideration of many complex interactions, which are rather delicately balanced,
and that this lies beyond our present understanding of these systems. Our aim here
is to give a rather general overview of this area, stressing the underlying physical
chemistry, rather than the fine details. The treatment and emphasis that we present
here represents our own personal, idiosyncratic views of this complex and rapidly
developing field.

In figure 2 we present a simple taxonomy of the major lyotropic liquid crystalline
phases. We have arranged the ordering of the phases in this figure such that the
lamellar L, phase, which has a flat interface, occupies the central position and on
either side of it the interfacial mean curvature of successive phases is steadily
increasing in magnitude. To the left the interfacial curvature is towards the water,
and by convention we describe this as negative mean curvature. Phases with
negative mean interfacial curvature are known as type II, or inverse. Such phases are
commonly formed by double-chain amphiphiles such as phospholipids. Conversely,

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 2. A taxonomy of the principal lyotropic liquid crystalline phases, arranged according to
the mean curvature at the polar/non-polar interface.

+

to the right of the lamellar phase the curvature is increasingly away from the water,
i.e. the curvature is positive. These phases are known as type I or normal phases.
Such phases are typically formed by single-chain amphiphiles (detergents, sur-
factants, lysophospholipids, etc.). We will be more concerned with the inverse phases
here, since they are of greater relevance to understanding membrane lipids.

The sequence of phases shown in figure 2 is often thought of as the natural sequence
of the translationally ordered lyotropic mesophases. In this context one would
imagine the water content increasing from left to right and thereby controlling the
mean interfacial curvature. However, experimental phase diagrams never exhibit
the entire sequence shown here and as we shall see real phase diagrams are sometimes
out of this natural sequence. It should also be noted that many lyotropic phases can
also form in various non-aqueous solvents such as glycerol, formamide or
ethylammonium nitrate; there is thus nothing unique about water in this respect.

The lamellar L, phase is the simplest and best understood of all of the lyotropic
mesophases, consisting of a one dimensional stacking of amphiphilic bilayers (see
figure 2). The simplest examples of mesophases with curved interfaces are the
hexagonal H; and H;; phases. Both of these structures are based on two dimensional,
hexagonal packings of rods. For the H; phase the rods are amphiphilic, whereas for
the H;; phase they are polar, containing water cores surrounded by the polar
headgroups of the amphiphile. In the H; phase the aqueous continuum is a true
solvent, in the sense that it can freely fill all of the available volume not occupied by
the polar headgroups. On the other hand, the oil continuum of the H;; phase consists
of fluid hydrocarbon chains which are tethered to the interfacial region, with
energetically preferred conformational states. The thickness of the hydrocarbon
region is thus quite severely constrained, and in any event cannot exceed a value set
by the length of the fully extended chains (in the absence of added oil).

Experimentally it is of course vital to ascertain whether a phase is type I or
type I1. However, it is usually difficult (due to Babinet’s principle) to distinguish the
two types directly from their diffraction patterns (Luzzati 1968). A variety of
methods may be used to obtain this information; the simplest is to note that usually
a type I phase will eventually transform upon water dilution to a micellar solution,

Phil. Trans. R. Soc. Lond. A (1993)
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380 J. M. Seddon and R. H. Templer

Figure 3. The structures of the well established inverse bicontinuous cubic phases. (¢) The gyroid
cubic phase, space group Ia3d (no. 230). (b) The double diamond cubic phase, space group Pn3m
(no. 224), (¢) The ‘plumber’s nightmare’ cubic phase, space group Im3m (no. 229). Taken with
permission from Seddon (1990).

whereas type 11 phases are frequently stable in the presence of a large excess water
phase.

In addition to the relatively simple L,, H; and H;; phases, there are four further
regions, marked a, b, ¢ and d in figure 2, where more complex, translationally ordered
phase structures may occur. These phases may be two dimensional or three
dimensional, and many of the latter have cubic symmetry. In what follows we will
concentrate on these cubic phases, although it should be remembered that other
phase types also exist.

The cubic phases in regions b and ¢ are now accepted to have the rather bizarre
sponge-like structures shown in figure 3. The inverse cubic phases (region b) shown
in the figure consist of a single continuous bilayer which divides space into two
interwoven, congruent aqueous sub-volumes. The cubic phase is therefore said to be
bicontinuous. The three inverse bicontinuous cubic phases of figure 3 are of
crystallographic space groups Pn3m (no. 224), Im3m (no. 229) and Ia3d (no. 230). In
the type I cubic phases the bilayer of figure 3 is replaced by water and the aqueous
volumes are replaced by amphiphilic rods.

The most highly curved lyotropic liquid ecrystalline phases appear to be
discontinuous cubic phases, consisting of packings of discrete inverse micellar, or
micellar aggregates onto rather complex cubic lattices. These phases occur adjacent
to the inverse micellar and normal micellar solutions, respectively, and are quite

Phil. Trans. R. Soc. Lond. A (1993)
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Cubic phases of self-assembled amphiphilic aggregates 381

distinet from the bicontinuous structures. It should be noted that various other
examples of cubic phases have been reported, whose categorization according to the
above scheme is to date uncertain.

We have too little space here to address the fascinating question as to the extent
to which Nature has taken advantage of the rich liquid-crystalline behaviour of
amphiphilic lipids to create ordered yet fluid biomembrane structures, and to
modulate dynamic processes in cells. It is well known that the L, phase forms the
basis of the fluid bilayer structure of the cellular and intracellular membranes of all
living organisms. The synthesis and maintenance of a flexible, fluid, self-healing
permeability barrier only two molecules (approximately 40 A) thick is enormously
simplified by the self-assembly properties of amphiphilic membrane lipids.
Furthermore, dynamic processes such as membrane fusion may be facilitated by the
presence of lipids that have a preference for adopting the non-lamellar phases we
have just described. Indeed, such lipids are extremely abundant in cell membranes,
especially those that are biologically active. There is a very striking similarity
between a fusion channel between two membranes, and the local structure of a
bicontinuous cubic phase; indeed transformation of an L, phase to such a cubic phase
must occur via fusion events. A more subtle point is that the distribution of lateral
stresses at different depths across a lipid bilayer, which affects its tendency to adopt
non-lamellar phases (see §3), might play a regulatory role upon any embedded
molecules such as membrane proteins. In this way the system might sense how close
it was to a transition to a non-lamellar ‘phase’. There is now quite convincing
evidence that micro-organisms control the lipid composition of their membranes so
as to maintain them close (but not too close) to a composition where non-lamellar
structures would begin to appear. Bouligand (1990) has discussed a number of
possible biological aspects of minimal surfaces and cubic phases. In particular he has
suggested that because of geometrical packing considerations the presence of certain
proteins embedded in the bilayer could induce the saddle deformations seen in the
bicontinuous cubic phases, and that this may be responsible for some of the complex
geometries and topologies adopted by various intra-cellular organelles. We will
return to this point in §5.

2. Forces between bilayers

The lamellar L, phase is the simplest of the phases to analyse, and serves as a useful
starting point for understanding the structure and transverse interactions within
the more complex lyotropic cubic phases. The equilibrium water layer thickness d,,
is set primarily by a balance between the various interactions acting transverse
to the layers (Ceve & Marsh 1987; Rand & Parsegian 1989; Israelachvili 1991).
These consist both of attractive (van der Waals) and repulsive (hydrational/
electrostatic/fluctuation, etc.) forces.

The simplest (non-retarded) form of the van der Waals attractive pressure
(transverse force per unit area) between bilayers, valid for d,, < 30 A, is

P,=—H,/6nd?, 2.1)

v

where the Hamaker constant H, has a value of roughly 7 x 1072* J for fluid phase
phosphatidylcholine bilayers (for comparison, k7 =4 x 1072' J at T = 290 K). The
Hamaker constant decreases as d,, increases, due to retardation effects, and is also
reduced in the presence of salts, due to ionic screening of the zero frequency

Phil. Trans. R. Soc. Lond. A (1993)
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382 J. M. Seddon and R. H. Templer

contribution to H,. A more complete (although still non-retarded) form of the
van der Walls interaction for a multibilayer stack is

—H 2 1
P, = 41— 2.2
A R er wm s = 22
where dy ., is the thickness of the hydrocarbon chain region of the bilayer.
The precise nature of the ‘hydration force’, which has a range of a few solvent
molecule diameters, is still a matter of considerable controversy. However, it is
generally of the form

B, = Py, (2.3)

where for phospholipids F, is typically in the region of 8 x 10°* N m™%, and the decay
length A =1-3A. At separations below 10-15 A additional steric repulsions
(peristaltic, protrusion and/or headgroup overlap) may come into effect (Israelachvili
& Wennerstrom 1992).

For a simple lamellar phase of flexible bilayers, the pure fluctuation force arising
from steric hindrance between adjacent layers, due to thermally excited layer
undulations, has the Helfrich (1978) form

P, = 3(nkT)?/64 k* 2, (2.4)

where «” is the bilayer bending modulus, which we will meet again in §3-5. The
strength of this repulsive interaction is thus inversely proportional to «?, and has the
same d.* dependence as the simplified van der Waals attraction of equation (2.1). The
fluctuation force is reduced when the bilayers are charged, are under mechanical or
osmotic stress, or are supported on solid substrates, since these factors all tend to
suppress the undulations. Typical values of x” range from 5x 102! J for sodium
dodecyl sulphate monolayers, 3.2 x 1072° J for fluid bilayers of the monoacylglycerol
monoelaidin, to as high as 2 x 107** J for fluid phosphatidylcholine bilayers. The first
of these values is similar to k7', and so fluctuations are very important in such
systems, leading to various isotropic solution phases. For phospholipids, on the other
hand, where «” is of the order of 20-50 k7', fluctuations play a lesser role in phase
stability. Thus, isotropic solution phases tend not to occur for phospholipids, in the
absence of co-surfactants or other solutes which increase the layer flexibility. The
bending elastic modulus depends strongly on the lipid chainlength and interfacial
area, and for lipid mixtures can have a lower value than that for either lipid on its
own (Ben-Shaul et al. 1987).

In the régime where the hydration force is the dominant transverse repulsive force,
there is a coupling between the fluctuations and the hydration force, leading to a
fluctuation pressure of the form (Rand & Parsegian 1989)

Py = (WET/32X) v/ (P,/K® A) e~ /2, (2.5)

At distances d, > A, this repulsion will dominate the pure hydration pressure,
decaying with distance half as quickly as the latter.

For charged bilayers there is an additional electrostatic repulsion term (Ceve
1990). For low surface potentials, the purely coulombic part has the approximate
form

b

Py = Py g%/, (2.6)

where Ay, is the Debye screening length and the constant term Py, , = (02/2e¢,), where
o is the surface charge density.

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

\\ \\

AL B

A
L

a

THE ROYAL A

J

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Cubic phases of self-assembled amphiphilic aggregates 383
- — Headgroup pressure

. «—— Interfacial pressure

- —> (Chain pressure

Figure 4. A schematic illustration of the lateral stresses in an amphiphilic monolayer.

For high surface potentials, at reasonably large bilayer separations, the
electrostatic repulsive pressure may be approximated by the expression

Py = 6.4 x 10°RTc[tanh (2F ¥,/2RT)]2e %o, (2.7)

where c is the salt concentration, z is the valency of the charged group, and P is the
surface potential of the bilayer, related to the surface charge density via the
Gouy—Chapman equation. These expressions neglect hydration, interfacial thickness
and charge correlation effects, and are therefore of somewhat restricted validity.

The water layer thickness in the lamellar phase can vary from less than 10 A to
greater than 1000 A, the swelling to large spacings being driven either by long-range
electrostatic or fluctuation forces. In some cases, swelling to very large spacings can
also occur in the presence of non-polar solvents such as alkanes, which partition into
the bilayers, causing the two lipid monolayers to move apart. Note that in principle,
swelling of a lamellar phase with either water or oil could occur at constant
interfacial area per molecule.

The rate of lateral diffusion of a phospholipid molecule within the L, phase is
typically 5x 1072 m?s™!. In addition, rapid chain and headgroup rotation, and
conformational changes occur, on timescales of 1-5 ns and 10-100 ps respectively.
Diffusion of the lipid molecules across the bilayer (‘flip-flop’) is usually a much slower
process, occurring on a timescale of minutes or hours.

3. Curvature and frustration

All the phases which remain to be discussed are characterized by having curved
interfaces. Therefore to understand how such phases form and how they are
stabilized we will need to explain the causes of this desire for interfacial curvature.

The physical forces driving the lamellar to non-lamellar phase transition are
present in the L, phase even when we are not close to the phase boundary. This
occurs because of imbalances which develop in the lateral stresses (pressures and
tensions) occurring around the headgroup region, the polar/non-polar interface, and
the hydrocarbon chain region, figure 4. The repulsive lateral pressure in the chain
region is due to the thermally activated cis—trans rotations in the C-C bonds, which
impart momentum to neighbouring amphiphiles during collisions. The hydrophobic
effect results in an interfacial tension, y, which acts to minimize the hydrocarbon—
water contact area. The lateral stress around the headgroup is thought to be net
repulsive, the outward pressure being due to steric, hydrational and electrostatic
interactions, with possible attractive components arising from direct hydrogen

Phil. Trans. R. Soc. Lond. A (1993)
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Figure 5 Figure 6

Figure 5. Curvature frustration. The desire for each monolayer to curve is frustrated in the lamellar
phase, since it would give rise to voids in the interior of the bilayer. Adapted from Sadoc &
Charvolin (1986).

Figure 6. Measurement of surface curvature. A unit vector n is drawn perpendicular to the surface.
A plane coincident with n intersects the surface in a curve, whose curvature varies continuously
upon rotation of the plane around n. The minimum and maximum values of the curvature, noting
the sign implied by n, are the principal curvatures ¢, and c,.

bonding between headgroups. The precise details of the headgroup interactions are
still poorly understood.

Without, for the moment, worrying too much about the precise form of the lateral
interactions, let us consider the effect these stresses will have on a flat monolayer. We
can see that because the interactions occur at different depths within the monolayer
there will, in general, be a net bending moment acting on the sheet. Where the lateral
stress in the headgroup region outweighs that in the chain region, the monolayer will
curl towards the chain region. For the opposite case, where the chain pressure is
dominant, the curvature will be towards the aqueous region. It is this latter case that
we would anticipate leads to the inverse topology phases.

Of course, in the lamellar, bilayer state, this desire for monolayer curvature is
physically frustrated. If we consider the case of interfacial curvature towards the
water region, it is clear that voids would be exposed in the core of the bilayer, figure
5. This would be energetically prohibitively expensive. There are only a limited
number of ways in which the system can relieve this frustration. Using topological
arguments Sadoc & Charvolin (1986) have identified four ways in which the system
may relax.

1. Where the desire for a curved interface is not too great, the bilayer will remain
flat and store the curvature energy by lateral stretching and transverse thinning of
the bilayer. The stretching energy per unit area, g, is given by

ga=3K4(4/4,—1)?, (3.1)

where 4 is the actual molecular area, 4, is the optimum area per molecule and « , is
the isothermal lateral compression modulus (Evans & Skalak 1980). Typically, for a
fluid lipid bilayer «, ~ 140 mN m™. In other words, lipid bilayers are quite stiff to

Phil. Trans. R. Soc. Lond. A (1993)
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stretching, reflecting, in part, the large hydrophobic energy cost of increasing the
area of exposed hydrocarbon chain, and this in turn means that molecular area
changes in the lamellar phase are relatively small and limited. Beyond this stretching
limit the material has no choice other than to undergo a phase transition where the
stored curvature energy can be relaxed.

2. One choice the system may make, is to form a single continuous bilayer of
negative gaussian curvature. This will result in the formation of the porous
structures of the inverse bicontinuous cubics.

3. A further choice is to form an infinite number of infinite disconnected
aggregates. This corresponds to the cylindrical aggregates of the H;; phase.

4. Finally, where the desire for interfacial curvature is at its strongest, the system
is likely to create an infinite number of disconnected aggregates of finite size. Apart
from the familiar case of inverse micellar solutions, this might also lead to liquid
crystalline phases of inverse micelles packed on to specific cubic lattices.

As it stands, our explanation of the forces which drive the lamellar phase towards
phases with curved interfaces is purely qualitative. We need to derive an expression
which relates the lateral interactions we have described to the local geometry. In
other words we require an expression for the curvature free energy, which we can
relate back to local molecular interactions. The curvature free energy has been
expressed in a number of ways by different authors (see, for example, Helfrich 1973,
1981; Petrov & Bivas 1985; Meunier et al. 1987; Dubois-Violette & Pansu 1990;
Helfrich & Rennschuh 1990; Fogden et al. 1991; Lipowsky 1991; Prost & Rondolez
1991 ; Strom & Anderson 1992; Ljunggren & Eriksson 1992). However, most of these
derive from the original work of Helfrich and we therefore feel it is appropriate to
start our discussions using the original expression due to him.

For curvatures which lie within the elastic regime, the curvature free energy per
unit area, g,, of a thin and two-dimensionally isotropic sheet can be expressed as

g. = 2«(H—H,)?+ k. K. (3.2)

H and K are the mean and gaussian curvatures respectively and are given by
H= %(614_02)» (33)
K=c,c,, (3.4)

where ¢, and c, are the principal curvatures, figure 6. The coefficient « is the splay or
mean curvature modulus introduced in equation (2.4), k; is the saddle splay or
gaussian curvature modulus and H is the spontaneous mean curvature, i.e. the mean
curvature of the relaxed film. By convention we make the sign of the mean curvature
negative if the curvature of the interface is towards the water and vice versa if the
curvature is away from the water. This convention will make H at the polar/non-
polar interfaces negative for all type 11, inverse mesophases. The reader should note
that some authors use the convention that positive H represents inverse phases.
It is important to realize that (3.2) can be used to express the curvature elasticity
of the bilayer, or the monolayer. However, the meaning of the moduli and the
spontaneous curvature will be different. In the case of a symmetric bilayer H, must
be zero, since both monolayers wish to curve equally in opposite directions, whereas
if we consider each monolayer independently H, will in general be non-zero. The
splay modulus for the bilayer is simply twice that of the monolayer; the cost of
cylindrically bending two elastic sheets costs twice that for one. The relation between
the bilayer and monolayer saddle splay modulus is however more complex. As

Phil. Trans. R. Soc. Lond. A (1993)
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determined by a number of authors (see, for example, Porte et al. 1989 ; Ljunggren
& Eriksson 1992) the relation is given by

Kl = 2(kg—4kH, 1), (3.5)

where the superscript b indicates a bilayer property, no superscript indicates a
monolayer property and / is the monolayer width. We shall return to the meaning of
this equation in §5.

The form of the lateral stress profile sets the values of the elastic moduli and the
spontaneous curvature via the following integrals taken across either the monolayer
or the bilayer ((3.6) and (3.7) are due to Helfrich (1981) and (3.8) is due to Szleifer
et al. (1990a))

kH,=—3}[7(2)2dz, (3.6)
kg = [1(2)2*dz, (3.7)
K= %f(%)zdz (3.8)

Here 7(z) is the lateral stress at a distance z through the film, figure 7. In principle,
these integral equations provide the link between the lateral forces and the
interfacial curvature. The ultimate goal of our work is to use experimental
determinations of these quantities to work back to a determination of the stress
profile. From the form of the stress profile we can then test and develop models of
the intermolecular interactions which give rise to the stress profile.

As one might anticipate this ambition is some way off being realized. At present
there is still much debate (and indeed confusion) concerning the modelling of the
energetics of mesophase behaviour. This has given rise to a proliferation of
interpretations, too numerous to cover in this paper. What we have done as a result
is to limit our discussions of the hexagonal, bicontinuous cubic and the micellar cubic
phases to those models which we have found most useful in understanding and
interpreting our own experimental data.

4. The inverse hexagonal phase

The H;; phase is the most common inverse phase possessing interfacial curvature.
Using equation(3.2) and measuring the curvature of the H;; monolayer tube at the
oil/water interface, the curvature energy can be expressed as

go = 2k(H' — H})?, (4.1)

where the superscript i indicates a measurement at the interface, and there is no
gaussian curvature term since ci = 0. However, the total free energy is not, in
general, dominated by the curvature free energy. Inspection of figure 8 shows why.
The hexagonal disposition of each H;; water channel means that it is only possible
to sustain a relatively narrow range of uniform H' without paying a large vacuum
energy cost because of the voids which would form at the corners of the hexagonal
cell. Even within the acceptable range of H' the hydrocarbon chains will have to
stretch to reach the corners. Both the uniformity of H' and this hydrocarbon
stretching have been experimentally confirmed by Turner et al. (1992). The
physically realizable values of H! inevitably bring the monolayer films on opposite
sides of the water channel into close proximity and this will mean that hydration
forces, Van der Waals attraction and for charged lipids, electrostatic forces, will also
form a significant part of the total free energy.
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7(2)

U z

Figure 7. The lateral stress profile 7(z) across a monolayer.

a
Figure 8. Packing frustration in the H;; phase. The shaded region shows the potential void within
the hydrocarbon region which must be filled by chains stretching beyond their preferred length.
Taken with permission from Seddon (1990).

Kirk et al. (1984) have developed a thermodynamic model of the L,—H; transition
in which some of these contributions have been calculated. Their model was used to
determine the dependence of these free energy contributions on water concentration.

Equation (4.1) is not likely to remain valid at low hydration, given the constraint
that this expression for the curvature free energy is only valid when the film
thickness is much smaller than the radius of curvature. Indeed, the osmotic stress
measurements of Rand et al. (1990) on dioleolyphosphatidylethanolamine (DOPE)
and 3/1 DOPE/dioleolyphosphatidylcholine (DOPC) plus alkane have shown that
the quadratic dependence of the free energy on H' only holds when the system is
relaxed, i.e. when H' is close to Hj at full hydration. At reduced hydration where H*
has a larger magnitude, the free energy rises much more steeply than expected, and
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Figure 9. The binary phase diagram for DDPE in water. Taken with permission
from Seddon et al. (1990a).

this is thought to relate to the work of headgroup dehydration, i.e. a breakdown in
the first order curvature elastic approximation.

5. The inverse bicontinuous cubic phases

Historically, the inverse bicontinuous cubic phases have often been referred to as
intermediate cubic phases. This has served to describe their frequently observed
position in the phase diagram, intermediate between the lamellar and inverse
hexagonal phase. An example of an actual lipid system which adopts all three of the
intermediate bicontinuous cubic phases is the phospholipid didodecyl phosphatidyl-
ethanolamine (DDPE), whose binary phase diagram in water (Seddon ef al. 1984,
1990a) is shown in figure 9. It is an important aspect of such phase diagrams, that
the intermediate phases are typified by occupying narrow regions of stability.

In these positions on the phase diagram the cubic phases are also intermediate in
the sense that their interfacial mean curvature lies between that of the lamellar and
inverse hexagonal phase. To prove this assertion and to develop a curvature free
energy model of these phases we have to come to grips with their geometry and
topology.

It was first suggested by Scriven (1976, 1977) that bicontinuous cubic phases
might occur which were based on the periodic minimal surfaces of Schwarz (1865)
and those who followed (see, for example, Neovius 1883 ; Schoen 1970 ; Nitsche 1989).
Such surfaces have the property that H = 0 everywhere on the surface. This is
achieved by ensuring that ¢, = —c¢, at all points, which means that the surface has
negative gaussian curvature, K = —cf. Such surfaces are hyperbolic, that is, they are
saddle surfaces. A saddle surface with quadrilateral edges set by the face diagonals
of two side by side cubes can, by appropriate reflections and rotations, be tesselated
in space to create Schwarz’s P surface, figure 10a. The saddle used to create the P
surface can also be bent into two new quadrilateral saddles, using the Bonnet
transformation, which can then be used to create two further periodic minimal
surfaces, the D and G surfaces, figure 105, c. This transformation occurs in such a
way as to leave the gaussian curvature at all points unchanged, and to preserve all
angles, distances and areas on the surface (Andersson et al. 1988).
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Figure 10. The topologically equivalent family of infinitely periodic minimal surfaces which
underlie the bicontinuous cubic phases shown in figure 3. (@) Schwarz’s P surface. (b) Schwarz’s D
surface (taken with permission from Mackay & Klinowski 1986). (¢) Schoen’s gyroid, and G surface
(reproduced from the frontispiece of Dubois-Violette & Pansu 1990).

It is now generally accepted that such periodic minimal surfaces do indeed define
the underlying geometry of the bicontinuous cubic phases, with the P surface being
the basis for the Im3m cubic phase of figure 3¢, the D surface relating to the Pn3m
cubic phase of figure 3b and the G surface defining the geometry of the Ia3d cubic
phase of figure 3a. Discussion of these ideas and the evidence in support of these
structures can be found in numerous articles (see, for example, Longley & McIntosh
1983; Hyde et al. 1984; Charvolin 1985; Mackay 1985; Sadoc & Charvolin 1986
Helfrich & Harbich 1987; Andersson et al. 1988 ; Anderson ef al. 1988 ; Mariani et al.
1988; Hyde 1989; Dubois-Violette & Pansu 1990). In the case of the type II
bicontinuous cubics the periodic minimal surface lies along the middle of the bilayer,
symmetrically partitioning equal volumes of water and lipid within the unit cell. It
can be shown (Hyde 1989) that the area of a small patch, 4, on a parallel surface at
a distance ! on either side of the minimal surface is related to the projected area, 4,,
of the patch on the minimal surface by

A ~ Ay(1+KP) (5.1)

so long as [ is not large with respect to the principal curvatures. Since K is always
negative (apart from special flat points) we can see that 4 < A4,. This means that for
any inverse bicontinuous cubic phase based on a minimal surface we can
accommodate negative H'. The interfacial mean curvature at a distance [ from the
underlying minimal surface is given by

H' ~ Kl (5.2)

where K is the gaussian curvature on the minimal surface and ¢,/ < 1. The sign on
l is determined by placing a vector, with its origin at the polar/apolar interface, such
that it points to the ends of the hydrocarbon chains. Any distance measured from the
origin in the direction of the vector is then positive and if measured in the reverse
direction is negative. This ensures that, in accord with our convention, the correct
sign is calculated for H'.

The bicontinuous cubic phases do not suffer the extreme chain packing stress of the
Hj; phase. Nevertheless their geometry does not fully avoid physical frustration. For
the case of the oil/water interface being parallel to the underlying minimal surface
we can see from equation (5.2) that H' will vary over the surface. Referring to
figure 6, this is because K = 0 at the apexes of the fundamental saddle, and varies
continuously to a most negative value at the saddle point. This means that H' = 0
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near the apexes and is most negative around the =addle points; for a parallel interface
the system is curvature frustrated.

We might instead insist that H' be kept constant. To do this the bilayer must be
thinned down near the apexes, so that molecules in this region have their chain splay
increased, and thickened close to the saddle point, to decrease chain splay where
previously it was maximal. (Note that equations (5.1) and (5.2) apply only to parallel
surfaces, and therefore are not applicable here.) Now having cured the curvature
frustration we have introduced transverse chain stress, by varying the bilayer width.
Anderson et al. (1988) have calculated that where the magnitude of 1/H' is
significantly greater than [/, the variation in bilayer width can be very small and the
free energy price of variations in the chain length will be less than in the Hy; phase.

We therefore anticipate that we may assume a constant thickness bilayer in using
the Helfrich expression, equation (3.2), for the curvature free energy of the cubic
phase. In using the Helfrich expression we effectively collapse the bilayer on to the
minimal surface, the effects of the bilayer thickness being subsumed into the
curvature elastic parameters. If we consider the expression in terms of the bilayer
and make the origin of all our calculations the underlying minimal surface we see
that both H” and HY are, by definition zero. This means that the curvature free
energy is simply proportional to K. The saddle splay modulus must be positive if we
are to obtain bicontinuous structures since here K < 0. This means that we can
reduce the free energy simply by making K more negative. Geometrically this is
equivalent to reducing the dimensions of the cubic unit cell. This would presumably
proceed until compensating interbilayer repulsive forces stabilized the phase.

In a cubic phase of uncharged lipids, the only significant repulsive bilayer
interaction across the aqueous channels is that due to the hydration force, which
would give rise to water channels with diameters at the narrowest parts of the phase
of a few tens of angstroms. (Non-lamellar phases are always geometrically stiffened
and in the bicontinuous cubics the bilayer fluctuations appear as acoustic and optical
lattice modes (Bruinsma 1992).) However, experimentally we can observe swollen
bicor}tinuous cubic phases with water channels which are, at their narrowest, over
100 A in diameter (Strom & Anderson 1992 ; Templer et al. 1992a). In such phases all
bilayer-bilayer interaction terms such as the attractive van der Waals and the
repulsive hydration force must be negligible (see equation (2.3)). Therefore, it is clear
that we are missing a stabilizing term in the curvature free energy expression.

Many extensions have been made to Helfrich’s original equation; for example
Fogden et al. (1991) have shown how a spontaneous gaussian curvature may be
introduced to produce a stable solution to the equation. However, we do not feel it
would serve any useful purpose to discuss every stabilized curvature free energy
model here, indeed we suspect it might serve to confuse rather than elucidate.
Rather, we present our own idiosyncratic synthesis of the work of Ljunggren &
Eriksson (1992) which itself follows Helfrich’s original work and has close similarities
to the work of Helfrich & Rennschuh (1990). In Ljunggren & Eriksson’s model the
curvature free energy is expanded up to fourth order in the principal curvatures,
making the bilayer curvature free energy for a bicontinuous cubic phase

g2 = k4 K+ k% K2, (5.3)
where the second-order saddle splay modulus, «% can be related to monolayer

quantities by (J. C. Eriksson, personal communication)
K% = 4kl?, (5.4)
where all symbols are as before.
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Figure 11. The curvature elastic free energy per unit area as a function of hydration. The curvature
free energy divided by the splay modulus, calculated for the G, D and P surfaces, has been
evaluated using Hy = —8.3x 103 A1 x,/x = 0.015, 4 = 116 A2, [ = 15.4 A and v = 1771 A®.

Since both of the saddle splay moduli are positive, equation (5.3) clearly satisfies
the condition that we should have a stable minimum in the free energy with respect
to K. Remembering that K varies continuously over the minimal surface we evaluate
the surface averaged bilayer curvature free energy per unit area as

p 477 CK®)
¢ OSiKKY
8, is the surface area of the underlying minimal surface, y is the Euler characteristic
of the unit cell and has values of —2, —4 and —8 for the D, P and G surfaces
respectively, and <...) indicates a surface averaged quantity. Since all of the surfaces
are related by a Bonnet transformation, (K?)/{K)? is a constant, which has been
evaluated by Helfrich & Rennschuh (1990) to be 1.2187 (henceforth denoted f).
Using topological and geometrical relations (Hyde 1989) it is possible to show that
the surface averaged curvature free energy expressed in terms of monolayer
quantities is given by

gy = %(5%) [KG—4KHOZ+6Kf(31[__Il>], (5.6)

where I = v/Al, the molecular volume divided by the headgroup area and the
monolayer width. As was pointed out previously the local geometry and topology of
the D, P and G surfaces is the same, which means that we should anticipate that the
energetic minima for the curvature free energy in these phases will always be
degenerate. However, they are dlstlngulshed by packlng space differently, that is,
the dimensionless surface area o =S,/V} varies (o0g=3.091, op=2.345 and
op = 1.919). Using these relationships we can determine the local molecular
geometry, I, in a given phase with respect to the ratio of moles of water to moles of

lipid, 6. s
_v nyG3I—1° ]
6‘29.9[/[240312(1—1)] 1]> (5.7)

where the value of 29.9 is the volume of a water molecule in cubic angstroms.
The curvature free energy as a function of hydration can be determined from
equations (5.6) and (5.7). The graph in figure 11 arose from a preliminary

@ = s (5.5)
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determination of elastic parameters in a ternary system of dilauroylphosphatidyl-
choline and lauric acid, at a molar ratio o1 1:2, in water. A more complete
description of this work is in preparation. The graph is typical of the phase sequence
commonly observed for the bicontinuous cubics. The [a3d cubic, based on the G
surface, appears at the lowest hydration since it packs space most efficiently. The
Pn3m cubic appears next, although only fleetingly in this example (experimentally
we were unable to resolve this phase), followed by the Im3m cubic, based on the P
surface, which has the most open structure. At low hydration the curvature free
energy rises steeply, so we might well expect that the H;; phase will have a lower free
energy than Ia3d at low hydrations (in reality this occurs around 6 = 30 for this
system). The curvature free energy difference between the phases is small, which is
typical of such phase transitions.

A note of caution should be sounded here. The fundamental aim behind fitting the
experimentally determined free energy functional to theory is to determine the
lateral stress profile via equations (3.6), (3.7) and (3.8). This means that one must
ensure that the measured free energy is predominantly due to the curvature
component. This will hold true only where the lattice parameter is sufficiently large
compared with . One can of course approximate any free energy curve close to the
minimum by equations such as (5.6), but the elastic parameters derived in this way
inevitably include contributions from transverse interactions such as the hydration
force and van der Waals interactions. No transverse interaction terms have yet been
calculated for these complex geometrical surfaces.

A second point that should be made is that equation (5.6) is a function of v/Al (I),
and of [. This might be problematic in making any calculation, since although 7 is
fixed at any level of hydration, [ can be varied within obvious, physical limits, as long
as v and 4 change in such a way as to keep I constant. Fortunately v is, to first order,
constant in real systems, and there exists a surface, approximately parallel to the
underlying minimal surface (Anderson ef al. 1988) about which the average molecular
area does not vary. This is the neutral surface and it lies in the chain region close to
the position of maximum chain pressure, usually somewhere between the oil/water
interface and the third carbon atom along the aliphatic chain (see, for example,
Szleifer et al. 1990b). By introducing this invariant area, 4, it becomes possible to
express I in terms of only one variable, [.

Thus far in this section, we have shown how the curvature free energy expression
behaves as a function of the hydration in a bicontinuous cubic phase. We are not yet
able to predict the behaviour as a function of temperature (the ordinate in figure 9).
To date only the lateral stress in the chain region has been theoretically treated at
a molecular level (Szleifer et al. 1990a, b). However, since the coordinate origin of all
of our calculations lies on the minimal surface, the contribution from the interfacial
and headgroup lateral stresses is heavily weighted in the higher moments of the stress
profile (equations (3.6)—(3.8)). It might be argued that simply by moving the origin
of the integration of the lateral stress to the interface we could reduce the
contribution of these difficult to model stresses to negligible levels. Unfortunately we
cannot avoid the problem so easily, since we can only have one origin for our
integration and the interface and headgroup on the other side of the bilayer would
now be even further away from the origin.

This problem can be seen in the expression for the first order bilayer saddle splay
modulus (equation (3.5)); k% is not simply twice the monolayer gaussian modulus. If
it was we could quite happily calculate g from any position along the monolayer
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stress profile, but there is an additional contribution which expresses the fact that
the bilayer might wish to adopt negative gaussian curvature even if the individual
monolayers do not. The bilayer saddle splay modulus can then be seen to be
composed of two distinet parts. The term —4«xH,l expresses how the desire for
monolayer, mean interfacial curvature alone can be satisfied by deforming the
bilayer on to a saddle, whilst the second, more intriguing term, counts the cost (or
otherwise) of deforming the monolayer on to a saddle. Since H| is negative, the mean
curvature term is always positive. Hence, we can still have a positive value of k% even
if it is energetically unfavourable to deform the monolayer towards a saddle surface,
i.e. negative k. In this case the bicontinuous phases are being driven entirely by a
desire for mean interfacial curvature. We would expect that this might lead to rather
narrow ranges of phase stability since the magnitude H, would have to be great
enough to make «% positive, and where the magnitude of H,, is great we should expect
to find an Hy; phase close by. Thus for this situation we should expect to find narrow
regions of stability and relatively small cubic lattice parameters. This is indeed the
case in the systems which have the appearance of that shown in figure 9.

For DDPE the cubic phases are suppressed in favour of the H;; phase upon
addition of small amounts of dodecane. This presumably occurs because DDPE has
a strong desire for mean interfacial curvature and relatively little desire for gaussian
curvature, i.e. kg is small or possibly negative. Hence by reducing the potential
packing strain in the H;; phase by adding alkane the H;; phase is favoured. All three
cubic phases lie between the L, and H;; phases, with Ta3d appearing at low water
content, and Im3m and Pn3m occurring on heating in excess water (the limiting
hydrations of the latter two phases are not precisely established, but are in the region
of 50% (by mass) water). A striking result is that although the latter two cubic
phases are inverse, they are actually more hydrated than the L, phase. We presume
that this is because the lattice parameter is set by the interfacial mean curvature, as
is implicit in equations (5.6) and (5.7). Hence for intermediate values of H' extra
water is needed to fill the aqueous volume created in the new topology. What we
cannot explain is why there is apparently a region in the phase diagram, between 5
and 15 moles of water per moles of lipid, where the cubic phases disappear as an
intermediate phase.

What if « is positive ? Clearly in this case we should expect to see a greater range
of cubic phase stability and the possibility of larger lattice parameters. From a
consideration of the lateral stress profile, we would expect positive values of kg if the
headgroup stress was rather small, or even attractive. The monoglycerides, which
have small headgroups and have been shown to exhibit headgroup-headgroup
hydrogen bonding (Nilsson et al. 1991), are indeed characterized by having large
parts of their phase diagrams occupied by cubic phases, as shown in figure 12.

In this case the addition of dodecane, up to the maximum measured dodecane mole
fraction of 0.16, does not apparently lead to the destabilization of the cubic phases
(Moriarty 1992). We presume that this is because «, is positive and relatively large.
Support for these ideas comes from the observation that the addition of a second
lipid component which only forms lamellar phases, DOPC, can act to preferentially
reduce the magnitude of H, and so form swollen cubic phases (Templer et al. 1992a)
up to size limits sets by « (Bruinsma 1992).

As suggested by Bouligand (1990) saddle surfaces could be induced to form in
membranes by components which disrupt the regular lipid packing of a bilayer. This
could occur for example in a roughly hexagonal packing of lipids, in the presence of
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Figure 12. The binary phase diagram of mono-olein in water. Taken with permission
from Hyde et al. (1984).

Figure 13. Three proposed structures for the Pm3n micellar cubic phase. (@) The rod/micelle model
of Tardieu & Luzzati (1970), which has now been discarded. (b) The rod-like model of Fontell et al.
(1985). (c) The ‘clathrate-like’ model of Charvolin & Sadoc (1988). Taken with permission from
Fontell (1990).

a low density of somewhat larger proteins having seven-fold coordination to the
neighbouring lipids, which would induce a saddle deformation of the bilayer. Such
coordination at saddle points is also used to create the proposed bicontinuous
versions of fullerenes (Terrones & Mackay 1992). Such ideas suggest that amphiphiles
having effective headgroup shapes which can pack tightly around the disclination at
a saddle point as well as the flat, umbilic points might promote the stability of the
bicontinuous phases by lowering the hydrophobic energy cost.

6. The discontinuous (micellar and inverse micellar) cubic phases

In addition to the bicontinuous cubic phases, with negative gaussian interfacial
curvature, there is another class of cubic phases having positive gaussian interfacial
curvature. For these cubic phases the magnitudes of the average mean interfacial
curvatures (positive or negative) exceed those not only of the bicontinuous cubic
phases, but also those of the hexagonal H; and H; phases.
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Many binary surfactant/water systems adopt one or more type I cubic phases
adjacent to the micellar solution at volume fractions roughly in the region of 0.5.
Such behaviour is not generally seen with phospholipids, apart from the single chain
lysoderivatives (Arvidson et al. 1985). The most common of these cubic phases is of
spacegroup Pm3n (no. 223), and its structure has been the subject of considerable
controversy. The initial suggestion (Tardieu & Luzzati 1970) consisted of a
combination of micelles and a connected network of lipid rods, as shown in figure
13a. However, the structure is now accepted to consist of a packing of two types
of discrete micellar aggregates, two of one type and six of the other per unit cell
(Vargas et al. 1992). It is not yet established whether the aggregates are short rods
with differing rotational freedom at the two non-equivalent sites (Fontell ef al. 1985),
as shown in figure 135, or whether one site has quasi-spherical aggregates, and the
other discoidal aggregates (Charvolin & Sadoc, 1988), as shown in figure 13c.

Certain surfactant systems, such as the polyoxyethylene surfactants, can adopt as
many as three distinct cubic phase structures in the region of the phase diagram
adjacent to the micellar solution (R.J.Mirkin, J. M. Seddon & G.J.T. Tiddy,
unpublished results). Presumably all of these structures are based on packings of
discrete micellar aggregates, although the detailed structures are not yet established.

Cubic structures based on packings of inverse micelles have often been suggested
in the past, but have usually turned out to be bicontinuous cubic phases, and a feeling
developed in recent years that the former structures might actually be inherently
unstable. However, the first example of such an inverse micellar cubic phase, of space
group Fd3m (no. 227) has now been established in various hydrated binary lipid
mixtures (Mariani et al. 1988, 1990; Seddon 1990b; Seddon et al. 1990b). The
amphiphile systems range from fatty-acid-soap, fatty-acid-monoglyceride, to
diglyceride—phospholipid mixtures. The common feature of these systems is that
they contain one relatively strongly hydrophilic species, but large amounts of
another species that is too weakly hydrophilic to form any lyotropic mesophases at
all on its own in water. The latter species must however have the capacity for
hydrogen-bonding in its headgroup, presumably to enhance its miscibility with the
more polar lipid, and to ensure that it locates with its headgroup at the polar/non-
polar interface. No example has as yet been found of a purely binary lipid/water
system forming the Fd3m inverse micellar cubic phase. It is important to note that,
unlike the micellar cubic phase Pm3n, the Fd3m cubic phase is frequently stable in
the presence of an excess water phase.

The structure of this Fd3m cubic phase has recently been solved by low-resolution
crystallography (Luzzati ef al. 1992), and consists of a complex packing of two types
of quasi-spherical inverse micelles, as shown in figure 14 (the previously proposed
structure (Mariani et al. 1988, 1990) is now known to be incorrect). There are eight
of the larger, and 16 of the smaller inverse micelles per unit cell. It is remarkable that
essentially this structure was previously predicted, based on a theoretical
consideration of the properties of intersecting fluid films (Charvolin & Sadoc 1988).

The role of the weakly polar component appears to be twofold. First, it strongly
increases the tendency of the interface to curve towards the water. This is partly due
to its low hydrophilicity, but may also be due to a partial dehydration of the
headgroup of the more polar species from headgroup-headgroup bonding. Secondly,
it provides a mechanism for the stabilization of two different sizes of inverse micelle,
which would be energetically unfavourable for a binary lipid/water system, by
preferentially partitioning into the smaller, more highly curved inverse micelles.
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/

N
Figure 14. The Fd3m inverse micellar cubic phase structure. The light and dark shaded spheres
represent the larger and smaller water cores of the inverse micelles. The remaining volume is filled
with fluid hydrocarbon chains. The connecting lines are drawn merely to guide the eye. Taken with
permission from Seddon ef al. (1990b).

The effect of lowering the lipid chainlength is to suppress the formation of the
Fd3m cubic phase, replacing it with an Hy; phase (Seddon & Bartle 1992). This is
precisely the opposite behaviour to that of the inverse bicontinuous cubic phases,
which are favoured by lowering the chainlength (Seddon et al. 1984, 1990a).
However, it is entirely consistent with the inverse micellar structure of Fd3m, which
has a more negative interfacial mean curvature, but more chain packing frustration,
than the H;; phase. This increased packing frustration is partly due to the difference
in size of the two types of inverse micelle, and partly to the lower packing fraction
of the Fd3m structure (0.71 for an AB, packing of hard spheres, with the ratio of the
radii of A and B equal to 1.225) compared to that of the hexagonal phase (0.907 for
a packing of hard cylinders).

It is interesting to note that the structures of the micellar cubic phase Pm3n (no.
223) and the inverse micellar cubic phase Fd3m (no. 227) are analogous (Charvolin
& Sadoc 1988) to those of the so-called 12 A and 17 A cubic crystalline clathrate
crystals respectively. In the 12 A clathrate crystal structure, the water forms two
dodecahedral and six tetrakaidecahedral cages per unit cell, whereas in the 17 A
structure there are 16 dodecahedral and 8 hexakaidecahedral cages per unit cell. In
the Pm3n cubic phase, the two polyhedral surfaces define the mid-region of the
water, whereas in the Fd3m cubic phase the corresponding polyhedral surfaces define
the mid-region (methyl ends) of the hydrocarbon chains. To date, Pm3n has only
been found as a type I phase, and Fd3m only as a type II version. It is not yet clear
whether this is purely accidental, or whether there is some underlying reason for this
apparent asymmetry.

7. Geometry of non-lamellar phase transitions

In analysing phase transitions between non-lamellar phases, one extremely
important, yet little explored aspect is the geometric or epitaxial relations which
exist between coexisting lyotropic phases. For lamellar-hexagonal transitions, this
epitaxy is nearly self-evident, with the (001) crystallographic planes of the lamellar
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phase (i.e. the plane of the bilayers) being aligned with the (10) planes of the
hexagonal phase (Gruner et al. 1985; Templer et al. 19925b). For transitions involving
three-dimensional phases, however, the situation is much more complicated,
although it is now becoming clear that well-defined epitaxies also occur. The best
studied system to date is the polyoxyethylene surfactant hexaethylene glycol mono-
n-dodecyl ether (C,;,EO;). Monodomain samples of this type I system have been
studied by X-ray diffraction and polarizing microscopy (Rang¢on & Charvolin 1988a;
Clerc et al. 1991), and the epitaxy shown in figure 15 was established. The (001) planes
of the lamellar phase were aligned parallel to the (211) planes of the Ia3d
bicontinuous cubic phase. The H; phase grew from the cubic phase with its (10)
planes parallel to the (211) planes of the latter, and with the H; cylinder axes aligned
along the {111) axes (body-diagonal) of the cubic phase. Furthermore, the repeat
spacings of these crystallographic planes (which are the planes of highest density in
each phase) were equal for each of the three phases. Similar, precise epitaxies have
been observed at the phase boundaries of another type I system, sodium dodecyl
sulphate/water (Kékicheff & Cabane 1988). These important findings imply that
lyotropic phase transitions occur along well defined geometric paths, and such
studies should be most useful in analysing the underlying mechanisms of these
transitions.

For type II systems much less information is currently available on cubic phase
epitaxies. We have observed in the system monoolein/water (Templer et al. 19925)
that the alignment of the Ia3d cubic phase with respect to the lamellar phase was
with the {111) axis parallel to the lamellae. However, the cubic orientation varied
between having the (220) planes or the (211) planes parallel to the lamellae. The
latter orientation corresponds to that observed in the type I mesophases. Similar,
although not identical results have also been observed by Rawiso & Charvolin
(unpublished observations).

Further insight into the mechanism of lyotropic phase transformations may be
obtained by analysis of diffuse scattering indicative of defects or displacement
disorder, from monodomain samples close to phase transitions (Rancon & Charvolin
1987, 1988b).

It has been suggested that cubic—cubic transitions between phases of the same
genus, such as Pn3m and Ia3d, might occur via a Bonnet-like transformation (Hyde
et al. 1984). Such a mechanism is attractive because it leaves the gaussian curvature
of the bilayer mid-plane unchanged during the transition, and the underlying
minimal surfaces (the D-surface and the G-surface) of the above-mentioned cubic
phases are indeed related by the Bonnet transformation. However, it would require
a rather complex sequence of layer self-intersections to occur during the transition,
and thus is probably physically unrealistic. We believe that a more physical model
is that considered for minimal surfaces by Sadoc & Charvolin (1989), where the
transformation P-D—G may be achieved simply by changing the connectivity of the
nodes of the networks (skeletal graphs) which lie on either side of the minimal
surfaces. These three networks are shown in figure 16. The six-fold connectivity of
the node for the P-surface can be changed first to the four-fold one of the D-surface,
and then to the three-fold one of the G-surface simply by carrying out a stretching
process. Concomitant adjustment of the angles between the network lines from 90°
to 109.47° to 120° will then achieve the transformation P-F-G. During this process
stretching and deformation of the minimal surfaces occurs, but self-intersection of
the surfaces is not required. Cubic—cubic transitions occurring by such a mechanism
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Le-: D
001) <~—— (1) ~—— (0)
[t11]  — 7 [oo1]
Lo Q. H,
Figure 15. The epitaxial relationships between the L, oil-in-water bicontinuous cubic (Ia3d), and

H, phases, observed in the surfactant system C,,EO,/water. Taken with permission from Rangon
& Charvolin (1988a).

(©

Figure 16. Stretching transformations between the periodic minimal surface family G-D-P. (a) The
skeletal graph of the P surface unit cell. (b) By stretching the six-fold junction along the body
diagonal one obtains the two four-fold junctions shown, and with appropriate adjustments of
angles, this gives the correct symmetry for the D surface. (c) Stretching at each of the four-fold
junctions one obtains the three-fold junctions of the gyroid. Taken with permission from Sadoc &
Charvolin (1989).

could thus proceed without the need for complex layer fusion events to occur, and
such topological stretching may be able to occur in a fluid bilayer with little or no
stretching energy.
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